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ABSTRACT---In recent decade, diagnosing the fault in 

Unmanned Autonomous Vehicle (UAV) based Wireless Sensor 

Networks (WSN) has received a little attention by the researchers. 

The limitations of UAV-WSN environment possibly affects the 

fault diagnosis. The limitations associated with UAV-WSN 

conditions are considered as the scope of present study in 

diagnosing the fault in network. The study focuses mainly on 

improving the overall lifespan of network and further it tends to 

increase the network scalability. Since, the overall network 

lifetime and scalability reduces as the condition of the network 

worsens. Hence, the observation on network becomes poor in 

identifying the faults associated with the network. To resolve the 

issue, anAdaptive Reinforcement Learning is proposed in the 

study for the fault detection of flying sensor nodes in UAV-WSN. 

This approach diagnoses the faults in the network in an effective 

way and improves the overall efficiency of the network. 

KeywordsFault diagnosis, UAV, WSN, Adaptive 

Reinforcement learning 

I. INTRODUCTION 

The interest of a wide range of applications is significant 

for unmanned aerial vehicle (UAVs) and aerial robots[1]. In 

several of them, there can be significant advantages of 

active cooperation between various UAVs[2].Fault detection 

and identification technology (FDI) plays an important role 

in efforts to enhance system reliability in aerial 

vehicles.Most of the FDI and UAV applications that appear 

in the literature are based on model-based methods, trying to 

diagnose defects by redundancies of some system dynamic 

mathematical description.For non-manned aircraft, FDI was 

applied either with a UAV wing or a UAV helicopter. 

 

 
Figure 1: UAV- WSN Architecutre 
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Differential GPS Receivers (DGPS) can achieve accuracy 

in positioning UAV main sensors. Because they generally 

are the only absolute position sensors in UAVs, their 

measurement reliability is critical for UAV missions.When 

DGPS readings are incorrect or when the variable modes are 

lost it may cause large drift errors in position estimation. 

There is an extensive detection in the literature 

concerning the fault detection [6]- [13], in finding the 

incorrect measurement which is said to be the Receiver 

Autonomous Integrity Monitoring [3]. It has different 

techniques in developing the faut. 

The common objects can be identified  at the place using 

a variety of UAVs when  a visual camera is eqiuipped with 

it. For example, the matching of the obtained same 

landmarks with two UAV's and identifying the 

landmarks[2] which is natural by using a robust technique. it 

shows the displacement among both the  UAVs in relative 

pose. This fault can be detected, for example, if the DGPS 

of UAV-A is defective, by using UAV-B's DGPS and the 

relative image position estimates. The proposal is to 

estimate UAV-A's position using the known UAVB position 

and the relative UAV-A and UAV-B position estimates 

using the method outlined above.Unfortunately, the 

accuracy and noise levels of these vision-based position 

estimates vary from different factors. 

This paper therefore adopts a variable threshold Strategy 

using Adaptive Reinforcement Learningto detect a fault. 

Moreover, the likelihood of a similar scene in the field of 

view of two or more UAVs is not very high when carrying 

out a plan in multi‐UAV missions. 

II. FAULT DETECTION IN UAV-WSN USING 

ADAPTIVE REINFORCEMENT LEARNING 

In current research, its reinforcement learning module is 

the agent for the intelligent block problem, which tries to 

find the failures along the entire flight path. The adaptive 

enhancement learning model consists of two main 

components. 

Consider the overall situation of an agent interacting with 

an environment shown in Figure 2. At every stage t, the 

agent observes a certain state st and needs to select a 

measure. The environmental state changes to st+1 and the 

agent received the reward rt following the action. State 

transitions and rewards are stochastic and are supposed to be  
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properties of Markov i.e. the probability of a state transition 

and the rewards only depends on the environmental status st 

and the action of the agent at. 

The first element is that agents learn value that matches a 

set of strategy, not values that match individual strategies as 

they did in previous publications [4].Especially the set of all 

strategies is divided into tiles, which mean a partition 

tileInstead, any strategy from the tile will lead to the 

reinforcing of the tile. The agent will therefore estimate the 

value of playing a specific strategy based on the value of the 

tile in which it is found. 

In the second element, the partition changes over time. 

The second part. In particular, we are building on a recent 

approach method known as tile adaptation [5]. The method 

begins with a coarse partition containing just one tile.The 

partition is improved with the time as the agent knows. 

While and where to improve the partition is the key issues in 

the process of refinement. The wide answers are: when the 

learning of this score has converged and refined to 

maximize the improved value function, this score will be 

further refined. By adding a sensitivity parameter to increase 

the algorithm, the partition becomes more accurate 

 

 
Figure 1: Architecture of Reinforcement learning 

 

When selecting the next action in its current state, the 

Reinforcement Learning Agent always faces a dilemma of 

exploration and exploitation. When it chooses a gullible 

action which takes the current state of the highest priority, it 

exploits its previously gained knowledge of the values of the 

action. Instead of selecting one of the non-graceful actions, 

it explores the value of the non-graceful actions.The 

reinforcement student uses a common probability policy at 

the early stage of the learning, according to which every 

action has the same probability of being taken. It can 

explore as many states and actions as possible in this way. It 

changes at the middle stage to the Gibbs Softmax policy, 

under which higher preferred actions are more likely to be 

chosen.The module can partially explore and partially 

exploit simultaneously by using this policy. It uses a greedy 

policy in the final stage that enables it to make full use of its 

experience before. 

The key issue is the choice of action by means of a vector 

value. In this case, Q(s,a) is not a basic value, because it is a 

vector value, and for the first and second object the action is 

considered maximal and ideal. Multiple non- dominated 

actions are represented as the relationship of Pareto- 

dominance. The agent is used in defining the order of the 

vector value with an action selection function that permits 

required action in Eq.(1). 

The action selection function (U) is used to find the fault 

and non-fault nodes, 
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The scalarisation function (f) is implemented over action 

selection function (U) to map the values of vector to the 

values of vector, which is given by,  
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Hence, to maintain trade-off between the objective 

function i.e. fault nodes. 

The scalarisation is estimated as linear weighted sum of 

cost and path as in Eq.(3) with weights wo provides the 

importance of the following objective function: 
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As it is difficult to calculate the concept of reward for 

action (finding the faults), linear scaling is added since 

simple transactions are performed. 

III. PERFORMANCE EVALUATION & RESULTS 

Figure 3 illustrates an accumulated fault detection 

production function (CDF), for custom techniques of 

training while the Phasor Measurement Unit interaction 

delay interval is[10,80] and[10,180] ms, respectively, in 

each case (9000 test cases for each curve)[10,80] ms. The 

time of detection is defined as the length between the failure 

occurrence and the fault sensors.In 90% of all cases, when 

the defect detector is trained in view of the delayed arrival 

of measurements, we read that, compared to only 20% of 

cases in less than 20 ms detected in training of synchronized 

measurements, the defective condition is detected in less 

than 20 ms. 

 

 
Figure 3: CDF of detection time for finding the faults 

over 9000 test cases having delays between 10 and 80 ms 
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IV. CONCLUSIONS  

In autonomous UAV navigation, default detection is an 

important issue. In particular, the catastrophic effects of 

GPS transient failures that are very common in some 

scenarios. In the event of gps failures, computer vision may 

be used to estimate relative positions. In this paper, the use 

of Adaptive Reinforcement learning to increase reliability in 

multi-UAV systems has been shown by machine learning 

techniques. In the future work will include the use of 

cameras on locations or transferred by people and other 

sensors, the proposed method will be verified 

experimentally using the data generated by experiments in 

field UAV monitoring. 
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